Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article Dans Anglais | Scopus | ID: covidwho-2321400

Résumé

During the COVID-19 pandemic, essential workers such as waste collection crews continued to provide services in the UK, but due to their small size, maintaining social distancing inside waste collection vehicle cabins is impossible. Ventilation in cabins of 11 vehicles operating in London was assessed by measuring air supply flow rates and carbon dioxide (CO2) in the driver's cabin, a proxy for exhaled breath. The indoor CO2 indicated that air quality in the cabins was mostly good throughout a working day. However, short episodes of high CO2 levels above 1500 ppm did occur, mainly at the beginning of a shift when driving towards the start of their collection routes. This data indicated that the ventilation systems on the vehicles were primarily recirculating air and the fresh air supply made up only 10-20 % of the total airflow. Following recommendations to partly open windows during shifts and to maintain ventilation systems, a second monitoring campaign was carried out, finding on average, an improvement in ventilation on board the vehicles. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

2.
Build Environ ; 233: 110099, 2023 Apr 01.
Article Dans Anglais | MEDLINE | ID: covidwho-2246090

Résumé

The COVID-19 pandemic has prompted huge efforts to further the scientific knowledge of indoor ventilation and its relationship to airborne infection risk. Exhaled infectious aerosols are spread and inhaled as a result of room airflow characteristics. Many calculation methods and assertions on risk assume 'well-mixed' flow conditions. However, ventilation in buildings is complex and often not showing well-mixed conditions. Ventilation guidance is typically based on the provision of generic minimum ventilation flow rates for a given space, irrespective of the effectiveness in the delivery of the supply air. Furthermore, the airflow might be heavily affected by the season, the HVAC ventilation, or the opening of windows, which would potentially generate draughts and non-uniform conditions. As a result, fresh air concentration would be variable depending upon a susceptible receptor's position in a room and, therefore, associated airborne infection risk. A computational fluid dynamics (CFD) and dynamic thermal modelling (DTM) framework is proposed to assess the influence of internal airflow characteristics on airborne infection risk. A simple metric is proposed, the hourly airborne infection rate (HAI) which can easily help designers to stress-test the ventilation within a building under several conditions. A case study is presented, and the results clearly demonstrate the importance of understanding detailed indoor airflow characteristics and associated concentration patterns in order to provide detailed design guidance, e.g. occupancy, supply air diffusers and furniture layouts, to reduce airborne infection risk.

3.
J Hosp Infect ; 119: 163-169, 2022 Jan.
Article Dans Anglais | MEDLINE | ID: covidwho-1433519

Résumé

BACKGROUND: While the range of possible transmission pathways of severe acute respiratory syndrome coronavirus-2 in various settings has been investigated thoroughly, most authorities have recently acknowledged the role of aerosol spread in its transmission, especially in indoor environments where ventilation is poor. Engineering controls are needed to mitigate aerosol transmission in high-risk settings including hospital wards, classrooms and offices. AIM: To assess the effectiveness of aerosol filtration by portable air cleaning devices with high-efficiency particulate air filters used in addition to a standard building heating ventilation and air conditioning (HVAC) system. METHODS: Test rooms, including a single-bed hospital room, were filled with test aerosol to simulate aerosol movement. Aerosol counts were measured over time with various portable air cleaning devices and room ventilation systems to quantify the overall aerosol clearance rate. FINDINGS: Portable air cleaning devices were very effective for removal of aerosols. The aerosols were cleared five times faster in a small control room with portable air cleaning devices than in the room with HVAC alone. The single-bed hospital room had an excellent ventilation rate (∼14 air changes per hour) and cleared the aerosols in 20 min. However, with the addition of two air cleaning devices, the clearance time was three times faster. CONCLUSIONS: Inexpensive portable air cleaning devices should be considered for small and enclosed spaces in healthcare settings, such as inpatient rooms and personal protective equipment donning/doffing stations. Portable air cleaning devices are particularly important where there is limited ability to reduce aerosol transmission with building HVAC ventilation.


Sujets)
Pollution de l'air intérieur , COVID-19 , Aérosols , Climatisation , Filtration , Humains , SARS-CoV-2 , Ventilation
4.
Environ Res ; 202: 111560, 2021 11.
Article Dans Anglais | MEDLINE | ID: covidwho-1293775

Résumé

In order to avoid SARS-CoV-2 transmission inside educational buildings and promote the safe reopening of schools, the Italian Government, in line with the other European countries and in accordance with the WHO recommendations, adopted a contingency plan including actions able to guarantee adequate air ventilation in classrooms. Therefore, in this pilot study, a surveillance activity based on the real-time monitoring of CO2 levels as a proxy of SARS-CoV-2 transmission risk, was conducted inside 9 schools (11 classrooms) located in Apulia Region (South of Italy) during the reopening of schools after the lockdown due to COVID-19 pandemic. More specifically, monitoring activities and data treatment were conducted to evaluate the initial scenario inside the classrooms (first stage of evaluation) and the potential improvements obtained by applying a detailed operating protocol of air ventilation based on specific actions and the simultaneous real time visualization of CO2 levels by non-dispersive infrared (NDIR) sensors (second stage of evaluation). Although, during the first evaluation stage, air ventilation through the opening of windows and doors was guaranteed, 6 (54%) classrooms showed mean values of CO2 higher than 1000 ppm and all classrooms exceeded the recommended CO2 concentration limit value of 700 ppm. The development and implementation of tailored ventilation protocol including the real time visualization of CO2 levels allowed to depict better scenariosAn overall improvement of CO2 levels was indeed registered for all classrooms where teachers were compliant and helpful in the management of the air ventilation strategy. Therefore, this study reports the first evidence-based measures demonstrating that, with the exception of few environments affected by structural limits, the real-time visualization and monitoring of CO2 concentrations allowes effective air exchanges to be implemented and contributes to prevent SARS-CoV-2 transmission. Moreover, on the basis of the monitoring outcomes and in order to ensure adequate air ventilation in educational buildings, a 4 level-risk classification including specific corrective actions for each level was provided.


Sujets)
Pollution de l'air intérieur , COVID-19 , Pollution de l'air intérieur/analyse , Dioxyde de carbone/analyse , Contrôle des maladies transmissibles , Humains , Pandémies , Projets pilotes , SARS-CoV-2 , Établissements scolaires , Ventilation
SÉLECTION CITATIONS
Détails de la recherche